PROOF IN CALCULUS: Some thoughts ...

Differentiation from First Principles - from Day 1

My path through this:

- 1. Drawing targets, measuring gradients, spotting patterns
 start with pencil, rules and franted graphs
 perhaps more on to using technology to look at more graphs
- 2. Steps towards proof work at the limit of chords

3. Formal proof:

$$(x+h,(x+h)^2)$$

$$(x+h)^2-x^2$$

$$(x+h)^2-x^2$$

= 2x

Gradient =
$$\lim_{h \to 0} \frac{(x+h)^2 - x^2}{h}$$

= $\lim_{h \to 0} \frac{x^2 + 2xh + h^2 - x^2}{h}$

= $\lim_{h \to 0} \frac{2xh + h^2}{h}$

= $\lim_{h \to 0} 2x + h$

4. Generalise:

$$f'(\infty) = \lim_{h \to 0} \frac{f(\infty + h) - f(\infty)}{h}$$

Try f(xe) = xe3

Use knowledge of Binomial to generalise - able students will do this themselves with a little rudging if reccessary

Moring on ...

Differentiate each new function from first principles as you introduce it

Can be defined in terms of its derivative: the function for with $f'(\infty) = f(\infty)$

Sin x Stort by sketching the derivative to see it's a vertical otretch of cos x Use autograph to play around to get radians

Use a spreadsheet to investigate the limit of since (this is the handwaring bit)

Then differentiates from first principles

Product Rule

- Before chain rule because its easier to apply?
- Check $\frac{d(uv)}{d\alpha} + \frac{du}{d\alpha} \times \frac{dv}{d\alpha}$ for a polynomial function

$$\frac{\delta y}{\delta x} = u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u}{\delta x} \frac{\delta v}{\delta x}$$

$$\frac{\delta y}{\delta x} = u \frac{\delta v}{\delta x} + v \frac{\delta u}{\delta x} + \frac{\delta u}{\delta x} \frac{\delta v}{\delta x}$$

$$\frac{dy}{d\alpha} = u \frac{dv}{d\alpha} + v \frac{du}{d\alpha} + \frac{du}{d\alpha} \times 0$$

Quotient Rule - use $y = \frac{u}{v} \Rightarrow vy = u$ and use product rule

Chain Rule.

Sausage machine Input
$$x \rightarrow u \rightarrow y$$
 Output

Then
$$\frac{\delta y}{\delta x} = \frac{\delta y}{\delta u} \times \frac{\delta u}{\delta x}$$

This is just fractions at this stage

As
$$\delta x > 0$$
 we get $\frac{dy}{d\alpha} = \frac{dy}{du} \times \frac{du}{d\alpha}$

HMM... how do we make sure students are confortable with 8x etc?

FUNDAMENTAL THEOREM OF CALCULUS

The fact that the area under the graph of y = f(x) is found by integrating f(x) is known as the 'fundamental theorem of calculus'.

Put another way, the theorem says that

if A is the area under the graph of y = f(x) (measured from some starting value of x),

then
$$\frac{\mathrm{d}A}{\mathrm{d}x} = \mathrm{f}(x)$$

To get an idea of why the theorem is true, think what happens when the value of x is increased by a small amount δx .

Let δy be the corresponding increase in y, and δA the increase in the area (shaded lighter). The extra area is very close to being a trapezium whose parallel sides are

So
$$\delta A = \frac{1}{2} (y + y + \delta y) \delta x = (y + \frac{1}{2} \delta y) \delta x$$

So
$$\frac{\delta A}{\delta x} = y + \frac{1}{2} \delta y$$

Now think what happens as δx gets smaller and smaller: δy also gets smaller and smaller, so $y + \frac{1}{2}\delta y$ gets closer to y, δA dA

and the ratio $\frac{\delta A}{\delta x}$ gets closer to $\frac{dA}{dx}$.

So
$$\frac{dA}{dx} = y = f(x)$$

